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Statement of the problem studied

1.1 Introduction

Modern sensors are collecting very high-dimensional data at unprecedented volume and speed, often
from platforms with limited processing power. These large datasets allow scientists and analysts
to consider richer physical models with larger numbers of variables, and thereby have the potential
to provide new insights into the underlying complex phenomena. Social media generate troves of
data, but human analysts and machines cannot quickly and accurately identify inappropriate or
dangerous content. The Large Hadron Collider (LHC) at CERN “generates so much data that
scientists must discard the overwhelming majority of it – hoping hard they’ve not thrown away
anything useful.” [23] Typical NASA missions collect hundreds of terabytes of data every hour [18]:
the Solar Data Observatory generates 1.5 terabytes of data daily [36], and the upcoming Square
Kilometer Array (SKA, [19]) is projected to generate an exabyte of data daily, “more than twice
the information sent around the internet on a daily basis and 100 times more information than
the LHC produces” [35]. In these and a variety of other science and engineering settings, there
is a pressing need to recover relevant or anomalous information accurately and efficiently from a
high-dimensional, high-velocity data stream.

Rigorous analysis of such data poses major issues, however. First, we are faced with the noto-
rious “curse of dimensionality”, which states that the number of observations required for accurate
inference in a stationary environment grows exponentially with the dimensionality of each observa-
tion. This requirement is often unsatisfied even in so-called “big data” settings, as the underlying
environment varies over time in many applications. Furthermore, any viable method for processing
massive data must be able to scale well to high data dimensions with limited memory and computa-
tional resources. Finally, in a variety of large-scale streaming data problems, ranging from motion
imagery formation to network analysis, the underlying environment is dynamic yet predictable,
but many general-purpose and computationally efficient methods for processing streaming data
lack a principaled mechanism for incorporating dynamical models. Thus a fundamental mathe-
matical and statistical challenge is accurate and efficient tracking of dynamic environments with
high-dimensional streaming data.

Classical stochastic gradient descent methods, including the least mean squares (LMS) or recur-
sive least squares (RLS) algorithms do not have a natural mechanism for incorporating dynamics.
Classical stochastic filtering methods such as Kalman or particle filters or Bayesian updates [6]
readily exploit dynamical models for effective prediction and tracking performance. However, these
methods are also limited in their applicability because (a) they typically assume an accurate, fully
known dynamical model and (b) they rely on strong assumptions regarding a generative model
of the observations. Some techniques have been proposed to learn the dynamics [58, 53], but the
underlying model still places heavy restrictions on the nature of the data. Performance analysis
of these methods usually does not address the impact of “model mismatch”, where the generative
models are incorrectly specified.

A contrasting class of prediction methods, receiving widespread recent attention within the
machine learning community, is based on an “individual sequence” or “universal prediction” [38]
perspective; these strive to perform provably well on any individual observation sequence without
assuming a generative model of the data. Online convex programming provides a variety of tools for
sequential universal prediction [40, 8, 60, 17]. Here, a Forecaster measures its predictive performance
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CHAPTER 1. STATEMENT OF THE PROBLEM STUDIED

according to a convex loss function, and with each new observation it computes the negative gradient
of the loss and shifts its prediction in that direction. Stochastic gradient descent methods stem
from similar principles and have been studied for decades, but recent technical breakthroughs allow
these approaches to be understood without strong stochastic assumptions on the data, even in
adversarial settings, leading to more efficient and rapidly converging algorithms in many settings.

This paper describes a novel framework for prediction in the individual sequence setting which
incorporates dynamical models – effectively a novel combination of state updating from stochas-
tic filter theory and online convex optimization from universal prediction. We establish tracking
regret bounds for our proposed algorithm, Dynamic Mirror Descent (DMD), which characterize
how well we perform relative to some alternative approach (e.g., a computationally intractable
batch algorithm) operating on the same data to generate its own predictions, called a “comparator
sequence.” Our novel regret bounds scale with the deviation of this comparator sequence from a
dynamical model. These bounds simplify to previously shown bounds when there are no dynamics.
In addition, we describe methods based on DMD for adapting to the best dynamical model from
either a finite or parametric class of candidate models. In these settings, we establish tracking
regret bounds which scale with the deviation of a comparator sequence from the best sequence of
dynamical models.

While our methods and theory apply in a broad range of settings, we are particularly interested
in the setting where the dimensionality of the parameter to be estimated is very high. In this
regime, the incorporation of both dynamical models and sparsity regularization plays a key role.
With this in mind, we focus on a class of methods which incorporate regularization as well as
dynamical modeling. The role of regularization, particularly sparsity regularization, is increasingly
well understood in batch settings and has resulted in significant gains in ill-posed and data-starved
settings [7, 45, 14, 9]. More recent work has examined the role of sparsity in online methods such
as recursive least squares (RLS) algorithms, but do not account for dynamic environments [3].

1.1.1 Organization of paper and main contributions

The remainder of this paper is structured as follows. In Section 1.2, we formulate the problem
and introduce notation used throughout the paper, and Section 1.3 provides some background
definitions for online convex optimization. Our Dynamic Mirror Descent (DMD) method, along
with tracking regret bounds are presented in Section 2.1; this section also describes the application
of data-dependent dynamical models and their connection to recent work on online learning with
predictable sequences. DMD uses only a single series of dynamical models, but we can use it to
choose among a family of candidate dynamical models. This is described for finite families in
Section 2.2 using a fixed share algorithm, and for parametric families in Section 2.3. Section 2.4
shows experimental results of our methods in a variety of contexts ranging from imaging to self-
exciting point processes. Finally, Section 2.5 makes concluding remarks while proofs are relegated
to Section ??.

1.2 Problem formulation

The problem of sequential prediction is posed as an iterative game between a Forecaster and the
Environment. At every time point, t, the Forecaster generates a prediction θ̂t from a closed, convex
set Θ ⊂ Rd. After the Forecaster makes a prediction, the Environment reveals the loss function
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CHAPTER 1. STATEMENT OF THE PROBLEM STUDIED

`t(·) where `t is a convex function which maps the space Θ to the real number line. We will assume
that the loss function is the composition of a convex function ft : Θ → R from the Environment
and a convex regularization function r : Θ → R which does not change over time. Frequently
the loss function, ft will measure the accuracy of a prediction compared to some new data point
xt ∈ X where X is the domain of possible observations. The regularization function promotes low-
dimensional structure (such as sparsity) within the predictions. We additionally assume that we
can compute a subgradient of `t or ft at any point θ ∈ Θ, which we denote ∇`t and ∇ft. Thus the
Forecaster incurs the loss `t(θ̂t) = ft(θ̂t) + r(θ̂t).

The goal of the Forecaster is to create a sequence of predictions θ̂1, θ̂2, . . . , θ̂T that has a low
cumulative loss

∑T
t `t(θ̂t). Because the loss functions are being revealed sequentially, the prediction

at each time can only be a function of all previously revealed losses to ensure causality. Thus, the
task facing the Forecaster is to create a new prediction, θ̂t+1, based on the previous prediction and
the new loss function `t(·), with the goal of minimizing loss at the next time step. We characterize
the efficacy of θ̂T,(θ̂1, θ̂2, . . . , θ̂T ) ∈ ΘT relative to a comparator sequence θT,(θ1, θ2, . . . , θT ) ∈
ΘT using a concept called regret, which measures the difference of the total accumulated loss of
the Forecaster with the total accumulated loss of the comparator. We are particularly interested
in comparators which are computationally intractable batch algorithms; in a sense, then, regret
encapsulates how much one regrets working in an online setting as opposed to a batch setting with
full knowledge of past and future observations:

Definition 1 (Regret). The regret of θ̂T with respect to a comparator θT ∈ ΘT is

RT (θT ),
T∑
t=1

`t(θ̂t)−
T∑
t=1

`t(θt).

Our goal is to develop an online convex optimization algorithm with low (sublinear in T ) regret
relative to a broad family of comparator sequences. Previous work proposed algorithms which
yielded regret of O(

√
T ) for the relatively small family of static comparators, where θt = θ for some

θ ∈ Θ and all t. In contrast, our main result is an algorithm which incorporates a dynamical model,
denoted Φt : Θ 7→ Θ, and admits a tracking regret bound of the form O(

√
T [1 +

∑T−1
t=1 ‖θt+1 −

Φt(θt)‖]).

1.3 Online convex optimization preliminaries

One common approach to forming the predictions θ̂t, Mirror Descent (MD) [40, 8], consists of
solving the following optimization problem:

θ̂t+1 =arg min
θ∈Θ

ηt〈∇`t(θ̂t), θ〉+D(θ‖θ̂t), (1.1)

where ∇`t(θ) denotes an arbitrary subgradient of `t at θ, D(θ‖θ̂t) is the Bregman divergence [12, 15]
between θ and θ̂, and ηt > 0 is a step size parameter. Let ψ : Θ → R denote a continuously
differentiable function that is σ-strongly convex for some parameter σ > 0 and some norm ‖ · ‖:

ψ(θ1) ≥ ψ(θ2) + 〈∇ψ(θ2), θ1 − θ2〉+
σ

2
‖θ1 − θ2‖2 (1.2)

5



CHAPTER 1. STATEMENT OF THE PROBLEM STUDIED

The Bregman divergence associated with ψ is

D(θ1‖θ2),ψ(θ1)− ψ(θ2)− 〈∇ψ(θ2), θ1 − θ2〉

≥ σ

2
‖θ1 − θ2‖2 (1.3)

An important consequence of this definition is the following generalization of the law of cosines:
for all θ1, θ2, θ3 ∈ Θ

D(θ1‖θ2) =D(θ3‖θ2) +D(θ1‖θ3)

+ 〈∇ψ(θ2)−∇ψ(θ3), θ3 − θ1〉. (1.4)

The MD approach is a generalization of online learning algorithms such as online gradient
descent [60] and weighted majority [33]. Several recently proposed methods consider the data-
fit term separately from the regularization term [22, 57, 31]. For instance, consider Composite
Objective Mirror Descent (COMID) [22], where:

θ̂t+1 =arg min
θ∈Θ

ηt〈∇ft(θ̂t), θ〉+ ηtr(θ) +D(θ‖θ̂t). (1.5)

This formulation is helpful when the regularization function r(θ) promotes sparsity in θ, and helps
ensure that the individual θ̂t are indeed sparse, rather than approximately sparse as are the solutions
to the MD formulation.

1.3.1 Static regret

In much of the online learning literature, the comparator sequence is constrained to be static or
time-invariant. In this paper we refer to the regret with respect to a static comparator as static
regret:

Definition 2 (Static regret). The static regret of θ̂T is

RT (θT ),
T∑
t=1

`t(θ̂t)−min
θ∈Θ

T∑
t=1

`t(θ).

Static regret bounds are useful in characterizing how well an online algorithm performs relative
to, say, a loss-minimizing batch algorithm with access to all the data simultaneously. More generally,
static regret bounds compare the performance of the algorithm against a static point which can be
chosen with full knowledge of the data.

1.3.2 Tracking regret

Static regret fails to illuminate the performance of online algorithms in dynamic settings where
the underlying parameters may be changing in time. Performance relative to a temporally-varying
or dynamic comparator sequence has been studied previously in the literature in the context of
tracking regret (also known as shifting regret) [28, 16], and the closely-related concept of adaptive
regret [33, 26].

In particular, tracking regret compares the output of the online algorithm to a sequence of
points θ1, θ2, . . . , θT which can be chosen collectively with full knowledge of the data. This is a

6



CHAPTER 1. STATEMENT OF THE PROBLEM STUDIED

fair comparison for a batch algorithm that detects and fits to drift in the data, instead of fitting
a single point. Frequently, in order to bound tracking regret there needs to be a measure of the
complexity of the sequence θ1, θ2, . . . , θT , characterized via a measure of the temporal variability of
the sequence, such as

V (θT ),
T−1∑
t=1

‖θt+1 − θt‖.

If this complexity is allowed to be very high, we could imagine that the comparator series would
fit the datastream and associated series of losses closely and hence generalize poorly. Conversely,
if this complexity is restricted to be 0, the tracking regret is equivalent to static regret. Generally,
sublinear tracking regret is only possible when the comparator sequence θT is piecewise constant
(where θt+1 − θt = 0 for all but a few t) or varying quite slowly over time – that is, for a small
family of comparators.

7



Summary of the most important results

2.1 Dynamical models in online convex programming

In contrast to previous tracking regret bounds, we develop methods and tracking regret bounds
which scale with

∑T−1
t ‖θt+1−Φt(θt)‖, where {Φt}, t = 1, 2, . . . is a sequence of dynamical models,

yielding small regret bounds for much broader classes of dynamic comparator sequences. Specifi-
cally, we propose the alternative to (1.1) and (1.5) in Algorithm 1, which we call Dynamic Mirror
Descent (DMD). By including Φt in the process, we effectively search for a predictor which (a)

Algorithm 1 Dynamic mirror descent (DMD) with known dynamics

Given decreasing sequence of step sizes ηt > 0
Initialize θ̂1 ∈ Θ.
for t = 1, . . . , T do

Observe xt and incur loss `t(θ̂t)
Receive dynamical model Φt

Set

θ̃t+1 =arg min
θ∈Θ

ηt〈∇ft(θ̂t), θ〉+ ηtr(θ) +D(θ‖θ̂t) (2.1a)

θ̂t+1 = Φt(θ̃t+1) (2.1b)

end for

attempts to minimize the loss and (b) which adheres to the dynamical model Φt. This is similar
to a stochastic filter which alternates between using a dynamical model to update the “state”,
and then uses this state to perform the filtering action. A key distinction of our approach and
analysis, however, is that we make no assumptions about Φt’s relationship to the observed data.
Our approach effectively includes dynamics into the COMID approach.1 Indeed, for a case with no
dynamics, so that Φt(θ) ≡ θ for all θ and t, our method is equivalent to COMID.

Our main result uses the following assumptions:

• For all t = 1, . . . , T the functions `t and ψ are Lipschitz with constants G and M respectively,
such that ‖∇`t(θ)‖∗ ≤ G and ‖ψ(θ)‖∗ ≤ M for all θ ∈ Θ. The function ‖ · ‖∗ used in these
assumptions is the dual to the norm in (1.2).

• There exists a constant Dmax such that D(θ1‖θ2) ≤ Dmax for all θ1, θ2 ∈ Θ.

• For all t = 1, . . . , T , the transformation Φt has a maximum distortion factor ∆Φ such that
D(Φt(θ1)‖Φt(θ2))−D(θ1‖θ2) ≤ ∆Φ for all θ1, θ2 ∈ Θ. When ∆Φ ≤ 0 for all t, we say that Φt

satisfies the contractive property.

1Rather than considering COMID, we might have used other online optimization algorithms, such as the Regular-
ized Dual Averaging (RDA) method [57], which has been shown to achieve similar performance with more regularized
solutions. However, to the best of our knowledge, no tracking or shifting regret bounds have been derived for dual
averaging methods (regularized or otherwise). Recent results on the equivalence of COMID and RDA [37] suggest
that the bounds derived here might also hold for a variant of RDA, but proving this remains an open problem.
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2.1.1 Tracking regret bound

Theorem 3 (Tracking regret of dynamic mirror descent). Let Φt be a dynamical model such that
∆Φ ≤ 0 for t = 1, 2, . . . , T with respect to the Bregman used in 2.1. Let the sequence θ̂T be
generated using Alg. 1 using a non-increasing series ηt+1 ≤ ηt, with a convex, Lipschitz function `t
on a closed, convex set Θ, and let θT be an arbitrary sequence in ΘT . Then

RT (θT ) ≤ Dmax

ηT+1
+

2M

ηT
VΦ(θT ) +

G2

2σ

T∑
t=1

ηt

with VΦ(θT ),
T−1∑
t=1

‖θt+1 − Φt(θt)‖

where VΦ(θT ) measures variations or deviations of the comparator sequence θT from the sequence
of dynamical models Φ1,Φ2, . . . ,ΦT . If ηt ∝ 1√

t
, then for some C > 0 independent of T ,

R(θT ) ≤ C
√
T (1 + VΦ(θT ))

This bound scales with the comparator sequence’s deviation from the sequence of dynamical
models {Φt}t>0 – a stark contrast to previous tracking regret bounds which are only sublinear for
comparators which change slowly with time or at a small number of distinct time instances. Note
that when Φt corresponds to an identity operator, the bound in Theorem 3 corresponds to existing
tracking or shifting regret bounds [17, 16].

It is intuitively satisfying that this measure of variation, VΦ(θT ), appears in the tracking regret
bound. First, if the comparator actually follows the dynamics, this variation term will be very
small, leading to low tracking regret. This fact holds whether Φt is part of the generative model
for the observations or not. Second, we can get a dynamic analog of static regret, where we
enforce VΦ(θT ) = 0. This is equivalent to saying that the batch comparator is fitting the best
single trajectory using Φt instead of the best single point. Using this, we would recover a bound
analogous to a static regret bound in a stationary setting.

The condition that ∆Φ ≤ 0 is similar to requiring that Φt be a contractive mapping. This
restriction is important; without it, any poor prediction made at one time step could be exacerbated
by repeated application of the dynamics. For instance, linear dynamic models with all eigenvalues
less than or equal to unity satisfy this condition with respect to the squared `2 Bregman Divergence,
similar in spirit to restrictions made in more classical adaptive filtering work such as [25].

Notice also that if Φt(θ) = θ in for all t, then Theorem 3 gives a novel, previously unknown
tracking regret bound for COMID.

2.1.2 Data-dependent dynamics

An interesting example of dynamical models is the class of data-dependent dynamical models. In
this regime the state of the system at a given time is not only a function of the previous state,
but also the actual observations. One key example of this scenario arises in self-exciting point
processes, where the state of the system is directly related to the previous, stochastic observations.
Our algorithm can account for such models since the function Φt(θ) is time varying, and therefore
can implicitly depend on all data up to time t, i.e. Φt(θ) = Φt(θ, x1, x2, . . . , xt). Our regret bounds

9
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therefore scale with how well the comparator series matches these data dependent dynamics:

R(θT ) ≤ C

(
√
T

[
1 +

T−1∑
t=1

‖θt+1 − Φt(θt, x1, . . . , xt)‖

])
.

Notice now that the data plays a part in the regret bounds, whereas before we only measured
the variation of the comparator. Data-dependent regret bounds are not new. Concurrent related
work considers online algorithms where the data sequence is described by a “predictable process”
[43]. The basic idea of that paper is that if one has a sequence functions Mt which predict xt
based on x1, x2, . . . , xt−1, then the output of a standard online optimization routine should be
combined with the predictor generated byMt to yield tighter regret bounds that scale with (

∑
t ‖xt−

Mt(x1, . . . , xt−1)‖2)1/2. However, [43] only works with static regret (i.e., regret with respect to a
static comparator) and their regret has a variation term that expresses the deviation of the input
data from the underlying process. In contrast, our tracking regret bounds scale with the deviation
of a comparator sequence from a prediction model.

2.2 Prediction with a finite family of dynamical models

DMD in the previous section uses a single sequence of dynamical models. In practice, however,
we may not know the best dynamical model to use, or the best model may change over time
in nonstationary environments. To address this challenge, we assume a finite set of candidate
dynamical models {Φ1,t,Φ2,t, . . . ,ΦN,t} at every time t, and describe a procedure which uses this
collection to adapt to nonstationarities in the environment. In particular we establish tracking
regret bounds which scale not with the deviation of a comparator from a single dynamical model,
but with how it deviates from a series of different dynamical models on different time intervals
with at most m switches. These switches define m + 1 different time segments [ti, ti+1 − 1] with
time points 1 = t1 < · · · < tm+2 = T . We can bound the regret associated with the best dynamical
model on each time segment and then bound the overall regret using a Prediction with Experts
Advice algorithm

Our dynamic fixed share (DFS) estimate is presented in Algorithm 2. Let θ̂i,t denote the output

of Alg. 1 using dynamical models Φi,1,Φi,2, . . . ,Φi,t; we choose θ̂t by using the Fixed Share forecaster
on these outputs.2 In Fixed Share, each expert (here, each sequence of candidate dynamical models)
is assigned a weight that is inversely proportional to its cumulative loss at that point yet with some
weight shared amongst all the experts, so that an expert with very small weight can quickly regain
weight to become the leader [27, 16].

In this update, λ ∈ (0, 1) is a parameter which controls how much of the weight is shared
amongst the experts. By sharing some weight, it allows experts with high loss, and therefore low

2There are many algorithms from the Prediction with Expert Advice literature which can be used to form a single
prediction from the predictions created by the set of dynamical models. We use the Fixed Share algorithm [27] as a
means to combine estimates with different dynamics; however, other methods could be used with various tradeoffs.
One of the primary drawbacks of the Fixed Share algorithm is that an upper bound on the number of switches
m must be known a priori. However, this method has a simple implementation and tracking regret bounds. One
common alternative to Fixed Share allows the switching parameter (λ in Alg. 2) to decrease to zero as the algorithm
runs [30, 1]. This has the benefit of not requiring knowledge about the number of switches, but comes at the price of
higher regret. Alternative expert advice algorithms exist which decrease the regret but increase the computational
complexity. For a thorough treatment of existing methods see [24].
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Algorithm 2 Dynamic fixed share (DFS)

Given decreasing sequence of step sizes ηt > 0 and ηr > 0
Initialize θ̂1 ∈ Θ, θ̂i,1 ∈ Θ and wi,1 = 1

N for i = 1, . . . , N , λ ∈ (0, 1), and ηt, ηr > 0.
for t = 1, . . . , T do

Observe xt and incur loss `t(θ̂t)
Receive dynamical model Φi,t for i = 1, . . . , N
for i = 1, . . . , N do

Set

w̃i,t+1 =
wi,t exp

(
−ηr`t

(
θ̂i,t

))
N∑
j=1

wj,t exp
(
−ηr`t

(
θ̂j,t

))
wi,t+1 =

λ

N
+ (1− λ)w̃i,t

θ̃i,t+1 =arg min
θ∈Θ

ηt〈∇ft(θ̂i,t), θ〉+ ηtr(θ) +D(θ‖θ̂i,t)

θ̂i,t+1 = Φi,t(θ̃i,t+1)

end for
Set

θ̂t+1 =
N∑
i=1

wi,t+1θ̂i,t+1

end for

11
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weight, to quickly regain weight if they start performing well. This is the mechanism that allows
fast switching between experts.

Theorem 4 (Tracking regret of DFS algorithm). Assume all the candidate dynamic sequences are
contractive such that ∆Φ ≤ 0 for Φi,t for all t = 1, .., T and i = 1, ..., N with respect to the Bregman
Divergence in alg 1. Then for some C > 0, the dynamic fixed share algorithm in Algorithm 2

with parameter λ set equal to m
T−1 , ηr =

√
8((m+1) log(N)+m log(T )+1)

T and ηt = 1/
√
t with a convex,

Lipschitz function `t on a closed, convex set Θ, has tracking regret

RT (θT ) =
T∑
t=1

`t(θ̂t)−
T∑
t=1

`t(θt)

≤ C
(√

T
(√

(m+ 1) logN +m log T + V (m+1)(θT )
))

,

where

V (m+1)(θT ), min
t2,...,tm+1

m+1∑
k=1

min
ik∈{1,...,N}

tk+1−1∑
t=tk

‖θt+1 − Φik,t(θt)‖

measures the deviation of the sequence θT from the best sequence of dynamical models with at most
m switches (where m does not depend on T ).

Note that the family of comparator sequences θT for which RT (θT ) scales sublinearly in T is
significantly larger than the set of comparators yielding sublinear regret for MD.

If T is not known in advance the doubling trick [17] can be used, where temporary time horizons
are set of increasing length. Note that V (m+1)(θT ) ≤ VΦi,t(θT ) for any fixed i ∈ {1, . . . , N}, thus
this approach yields a lower variation term than using a fixed dynamical model. However, we incur
some loss by not knowing the optimal number of switches m or when the optimal switching times
are.

2.3 Parametric dynamical models

Rather than having a finite family of dynamical models, as we did in Section 2.2, we may consider
a parametric family of dynamical models, where the parameter α ∈ Rn of Φt is allowed to vary
across a closed, convex domain, denoted A. In other words, we consider Φt : Θ ×A 7→ Θ. In this
context we would like to jointly predict both α and θ. One might consider defining ζ,(θ;α) as the
concatenation of θ and α, and then generating a sequence of ζ̂t’s using COMID (1.5) or DMD (2.1).
However, the COMID regret would not capture deviations of a comparator sequence of predictions
from a series of dynamical models as desired. To use DMD, we would need to define a dynamical
model Ψ : Θ × A 7→ Θ × A, so that Ψ(θ, α) = (Φ(θ, α), α), and use this in place of Φt in (2.1).
However, Ψ is not contractive for most Φ of interest, so the DMD regret bounds would not hold.

To address these challenges, we consider two approaches. First, in Section 2.3.1 we consider
tracking only a finite subset of the possible model parameters, in a manner similar to when we had
a finite collection of possible dynamical models, which provide a “covering” of the parameter space.
In this case, the overall regret and computational complexity both depend on the resolution of the
covering set. Second, in Section 2.3.2, we consider a special family of additive dynamical models;
in this setting, we can efficiently learn the optimal dynamics.

12
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2.3.1 Covering the set of dynamical models

In this section we show that by tracking a subset which appropriately covers the entire space of
candidate models, we can bound the overall regret, as well as bound the number of parameter
values we have to track, and the inherent tradeoff between the two. We propose to choose a finite
collection of parameters from a closed, convex set A and perform DFS (Alg. 2) on this collection.
We specifically consider the case where the true dynamical model α∗ ∈ A is unchanging in time and
use DFS with m = 0. (Fixed share with m = 0 amounts to the Exponentially Weighted Averaging
Forecaster [55, 33, 17].) In the below, for any α ∈ A, let

VΦ(θT , α),
T−1∑
t=1

‖θt+1 − Φt(θt, α)‖.

Theorem 5 (Covering sets of dynamics parameter space). Let εN > 0 and AN denote a covering set
for A with cardinality N , such that for every α ∈ A, there is some α′ ∈ AN such that ‖α−α′‖ ≤ εN .
Define candidate dynamical models as Φt(·, α) for α ∈ AN and assume they are all contractive with
respect to the Bregman Divergence used in Alg. 1. If ‖Φt(θ, α) − Φt(θ, β)‖ ≤ L‖α − β‖ for some
L > 0 for all α, β ∈ A, then for some constant C > 0, the DFS algorithm with ηt = 1√

t
, ηr =√

2 log(N)
T , λ = 0 yields a tracking regret bounded by

C

(√
T

[√
log(N) + min

α∈A
VΦ(θT , α) + TεN

])
.

Intuitively, we know that if we set εN to be very small we will have good performance because
any possible parameter value α ∈ A would have to be close to a candidate dynamic; however, we
would need to choose many candidates. Conversely, if we run DFS on only a few candidate models,
it will be computationally much more efficient but our total regret will grow due to parameter
mismatch.

Corollary 6. Assume A ⊆ [Amin, Amax]n, and let γ > 0 be given. Let k = d(Amax −Amin)nT γ/2e
and ∂ = (Amax − Amin)/(2k); let AN = {Amin + ∂,Amin + 3∂, . . . , Amin(2k − 1)∂}n correspond to
an n-dimensional grid with kn grid points over A. Then

max
α∈A

min
α′∈AN

‖α− α′‖1 ≤ T−γ .

Additionally, the total number of grid points is upper bounded by

N ≤
(

(Amax −Amin)nT γ

2
+ 1

)n
= O(T γn)

Under the assumptions of Theorem 5, with this set AN and using the fact that norms are equivalent
on finite-dimensional vectors ( i.e., there’s a finite Z > 0 such that ‖α − β‖1 ≤ Z‖α − β‖ for any
α, β ∈ A for any norm), we get the following bound on regret for some constant C > 0.

RT (θT ) ≤ C
(√

T

[√
γn log(T ) + min

α∈A
VΦ(θT , α)

]
+ T 1−γn

)
Here we have an explicit tradeoff between regret and computationally accuracy controlled by γ,

since the computational computational complexity is linear in N = O(T γn). We can further control
the tradeoff between computation complexity and performance by allowing εN to vary in time. This
could be done by using the doubling trick, setting temporary time horizons, and then refining the
grid once the temporary time horizon is reached using a slightly different experts algorithm which
could account for the changing number of experts as in [47].
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2.3.2 Additive dynamics in exponential families

The approach described above for generating a covering set of dynamical models may be effective
when the dimension of parameters is small; however, in higher dimensions, this approach can
require significant computational resources. In this section, we consider an alternative approach
that only requires the computation of predictions for a single dynamical model. We will see that
in some settings, the prediction produced by Dynamic Mirror Descent (DMD) and a certain set
of parameters for the dynamic model can quickly be converted to the prediction for a different set
of parameters. While the method described in this section is efficient and admits strong regrets
bounds, it is applicable only for loss functions derived from exponential families.

The basics of exponential families are described in [2, 56], and mirror descent in this setting is
explored in [5, 42]. We assume some φ : X → Rd which is a measurable function of the data, and
let φk, k = 1, 2, . . . , d, denote its components:

φ(x) = (φ1(x), ..., φd(x))T .

We use the specific loss function
`t(θ) = − log pθ(xt) (2.2a)

where
pθ(x), exp{〈θ, φ(x)〉 − Z(θ)} (2.2b)

for a sufficient statistic φ and Z(θ), log
∫

exp{〈θ, φ(x)〉}dx, known as the log-partition function,
ensures that pθ(x) integrates to a constant independent of θ. Furthermore, as in [5, 42], we use
the Bregman divergence corresponding to the Kullback-Liebler divergence between two members
of the exponential family:

D(θ1‖θ2) = Z(θ1)− Z(θ2)− 〈∇Z(θ2), θ1 − θ2〉.

In our analysis we will be using the Legendre–Fenchel dual of Z [29, 11]:

Z∗(µ), sup
θ∈Θ
{〈µ, θ〉 − Z(θ)} .

Let Θ∗ denote the image of Int Θ under the gradient mapping ∇Z i.e. Θ∗ = ∇Z(Int Θ). An
important fact is that the gradient mappings ∇Z and ∇Z∗ are inverses of one another [8, 17, 39]:

∇Z∗(∇Z(θ)) = θ
∇Z(∇Z∗(µ)) = µ

}
∀θ ∈ Int Θ, µ ∈ Int Θ∗

Following [17], we may refer to the points in Int Θ as the primal points and to their images under∇Z
as the dual points. For simplicity of notation, in the sequel we will write µ = ∇Z(θ), θ = ∇Z∗(µ),
µ̂t = ∇Z(θ̂t), etc.

Additionally, we will use a dynamical model that takes on a specific form:

Φt(θ, α) = ∇Z∗(At∇Z(θ) +Btα+ ct) (2.3)

for θ ∈ Int Θ, ct ∈ Rd, α ∈ Rn, At ∈ Rd×d, and Bt ∈ Rd×n. At, Bt and ct are considered known.
Using these dynamics, we let θ̂α,t denote the output of DMD (Alg. 1) at time t and µ̂α,t be its dual.
Under all these conditions, we have the following Lemma.
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Lemma 7. For any α, β ∈ A, let µ̂α,1 = µ̂β,1 be the duals of the initial prediction for DMD and
K1 = 0 ∈ Rd×n. Additionally assume that the minimizer of equation 2.1a is a point in Int Θ for
any parameter α ∈ A. Then the DMD prediction under a dynamical model parameterized by α can
be calculated directly from the DMD prediction under a dynamical model parameterized by β for
t > 0 as

µ̂α,t = µ̂β,t +Kt(α− β)

where
Kt = (1− ηt−1)At−1Kt−1 +Bt−1.

From Lemma 7, we see that the prediction for dynamical model α can be computed simply
from the prediction using parameters β and the value Kt. This is a significant computational gain
compared to DFS, where we had to keep track of predictions for each candidate dynamical model
individually and therefore needed to bound the number of experts for tractability.

Algorithm 3 leverages Lemma 7 to simultaneously track both θ̂t and the best dynamical model
parameter α. In this algorithm, ˜̀t is the function defined as

˜̀
t(µ),`t(∇Z∗(µ)) ≡ `t(θ).

The basic idea is the following: we use mirror descent to compute an estimate of the best dynamical
model parameter, compute the DMD prediction associated with that parameter, and then use DMD
to update that prediction for the next round.

Algorithm 3 Dynamic mirror descent (DMD) with parametric additive dynamics

Given decreasing sequence of step sizes ρt, ηt > 0
Initialize α̂1 = 0, K1 = 0, θ̂1 ∈ Θ, µ̂1 = ∇Z(θ̂1)
for t = 1, ..., T do

Observe xt
Incur loss `t(θ̂t) = −〈θ̂t, φ(xt)〉+ Z(θ̂t)
Set gt(α) = ˜̀

t(µ̂α,t) ≡ `t(θ̂α,t)
Set α̂t+1 = projA (α̂t − ρt∇gt(α̂t))
Set µ′t+1 = µ̂t +Kt(α̂t+1 − α̂t)
Set µ̃t+1 = (1− ηt)µ′t+1 + ηtφ(xt)

Set θ̃t+1 = ∇Z∗(µ̃t+1)
Set θ̂t+1 = Φt(θ̃t+1, α̂t+1)
Set Kt+1 = (1− ηt)AtKt +Bt

end for

Theorem 8. Assume that the observation space X is bounded. Let Θ ⊂ Rd be a bounded, convex
set satisfying the following properties for a given constant H > 0:

• For all θ ∈ Θ,

Z(θ),
∫
X

exp
{
〈θ, φ(x)〉

}
dν(x) < +∞.

• For all θ ∈ Θ, ∇2Z(θ) � 2HId×d.

• Let ft denote the objective function in (2.1a). For every x ∈ X and t ∈ {1, 2, 3, . . .}, the
solution to arg min

θ∈Θ
ft(θ) occurs where ∇ft = 0.
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If the assumptions of Lemma 7 hold, and Φt(θ, α) is contractive for all α ∈ A with respect to the
Bregman Divergence induced by Z(θ), and loss function is of the form (2.2) and

˜̀
t(µ),`t(∇Z∗(µ))

is convex in µ, and ηt, ρt ∝ 1/
√
t, then the tracking regret associated with Algorithm 3 for dynamical

models of the form (2.3) is

RT (θT ) ≤ C
√
T

(
1 + min

α∈A
VΦ(θT , α)

)
for some constant C > 0.

Theorem 8 shows that Algorithm 3 allows us to simultaneous track predictions and dynamics,
and we perform nearly as well as if we knew the best dynamical models for the entire sequence
in hindsight. While this approach is only applicable for specific forms of the loss functions and
dynamical models, those forms arise in a wide variety of practical problems.

2.4 Experiments and results

As mentioned in the introduction, many online learning problems can benefit from the incorporation
of dynamical models. In the below, we describe how the ideas described and analyzed in this
paper might be applied to anomaly detection from streaming dynamic textures, compressive video
reconstruction, and analysis of neuron firing rates within networks.

2.4.1 DMD experiment: dynamic textures with missing data

As mentioned in the introduction, sensors such as the Solar Data Observatory are generating data
at unprecedented rates. Heliophysicists have physical models of solar dynamics, and often wish
to identify portions of the incoming data which are inconsistent with their models. This “data
thinning” process is an essential element of many big data analysis problems. We simulate an
analogus situation in this section.

In particular, we consider a datastream corresponding to a dynamic texture [52][20] , where
spatio-temporal dynamics within motion imagery are modeled using an autoregressive process. In
this experiment, we consider a setting where “normal” autoregressive parameters are known, and
we use these within DMD to track a scene from noisy image sequences with missing elements.
(Missing elements arise in our motivating solar astronomy application, for instance, when cosmic
rays interfere with the imaging detector array.) As suggested by our theory, the tracking will fail
and generate very large losses when the posited dynamical model is inaccurate.

More specifically, the idea of dynamic textures is that a low dimensional, auto-regressive model
can be used to simulate a video which replicates a moving texture such as flowing water, swirling
fog, solar plasma flows, or rising smoke. This process is modeled in the following way:

θt = Aθt−1 +But

xt = C0 + Cθt +Dvt

vt, ut ∼ N (0, I).
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Noisy Data

(a) Noisy realization of a synthetic dynamic water tex-
ture

Noisy Data, 50% Missing

(b) Noisy realization of a synthetic dynamic water tex-
ture with 50% missing pixels

Figure 2.1: Dynamic textures simulation setup

In the above, θt denotes the true underlying parameters of the system, and xt the observations.
The matrix A is the autoregressive parameters of the system, which will be unique for the type
of texture desired, C0 the average background intensity, C is the sensing matrix which is usually
a tall matrix, and B and D encode the strength of the driving and observation noises respec-
tively. Using the toolbox developed in [44] and samples of a 220 by 320 pixel ocean scene [20],
we learned two sets of parameters A,A′ ∈ R50×50, one representing the water flowing when the
data is played forward, and the other when played backwards, as well as corresponding parameters
C0 ∈ R70400, C, C ′ ∈ R70400×50, B,B′ ∈ R50 and D,D′ ∈ R70400. Parameters θt ∈ [−500, 500]50

and data xt ∈ [−500, 500]70400 were then generated using these parameters, with the parameters
A′, B′, C ′, D′ and C0 on t = 100, ..., 120 and t = 300, ..., 320 and the parameters A,B,C,D,C0 on
the rest of t = 1, ..., 550 according to the above equations. Finally, every observation is corrupted
by 50% missing values, chosen uniformly at random at every time point. Examples of the full noisy
data, and data with missing values are shown in Figure 2.1.

The parameters A, C0, and C were then used to define our (imperfect) dynamical model for
DMD, Φt(θ) = Aθ, and a loss function `t(θ) = ‖Pt(Cθ − C0 − xt)‖22, where Pt is a linear operator
accounting for the missing data. Note that B and D are not reflected in these choices despite
playing a role in generating the data; our theoretical results hold regardless. We use ψ(·) = 1

2‖ · ‖
2
2

so the Bregman Divergence D(x‖y) = 1
2‖x − y‖

2
2 is the usual squared Euclidean distance, and we

perform no regularization (r(θ) = 0). We set ηt = 1
2
√
t
, and ran 100 different trials comparing the

DMD method to regular Mirror Descent (MD) to see the advantage of accounting for underlying
dynamics. The results are shown in Figure 2.2.

There are a few important observations about this procedure. The first is that by incorporating
the dynamic model, we produce an estimate which visually looks like the dynamic texture of interest,
instead of the Mirror Descent prediction, which looks like a single snapshot of the water. Second,
we can recover a good representation of the scene with a large amount of missing data, due to the
autoregressive parameters being of a much lower dimension than the data itself. Finally, because
we are using the dynamics of forward moving water, when the true data starts moving backward,
a change that is imperceptible visually, the loss spikes, alerting us of the abnormal behavior.
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(a) Loss curves for proposed dynamic mirror de-
scent (DMD) method and mirror descent (MD)
against time for a single trial.
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(b) Loss curves for DMD and MD against time
over 100 trials.

Figure 2.2: Simulation results for the experiment in Section 2.4.1. The vertical dashed lines indicate
the intervals where the posited dynamical model was not reflected by the underlying data; note
the sharp increases in the losses associated with DMD over those intervals, particularly in contrast
with the losses associated with MD. Standard online learning methods like MD do not facilitate
the detection of subsets of data which do not fit hypothesized physical models.

2.4.2 DFS experiment: social network analysis

To demonstrate the performance of Dynamic Mirror Descent (DMD) combined with the Fixed share
algorithm (which we call Dynamic Fixed Share (DFS)), we consider two scenarios: reconstruction
of a dynamic scene (i.e., video) from sequential compressed sensing observations, and tracking
connections in a dynamic social network.

Dynamical models have a rich history in the context of social network analysis [49], but we are
unaware of their application in the context of online learning algorithms. To show how DMD can
bridge this gap, we track the influence matrix of seats in the US Senate from 1795 to 2011 using
roll call data (http://www.voteview.com/dwnl.htm). At time t, we observe the “yea” or “nay” vote
of each Senator, which we represent with a +1 or −1. When a Senator’s vote is unavailable (for
instance, before a state joined the union), we use a 0. We form a length p = 100 vector of these
votes indexed by the Senate seat, and denote this xt.

Following [45], we form a loss function using a negative log Ising model pseudolikelihood to
sidestep challenging issues associated with the partition function of the Ising model likelihood.

For a social network with p agents, θt ∈ [−1, 1]p×p, where (θt)ab corresponds to the correlation
in voting patterns between agents a and b at time t. Let V denote the set of agents, V\a the set of
all agents except a, xa the vote of agent a, and θa,{θab : b ∈ V}. Our loss function is

ϕ
(a)
t (θa), log

[
exp

(
2θaaxa + 2

∑
b∈V\a θabxaxb

)
+ 1
]

f (a)(θa;x),− 2θaaxa − 2
∑

b∈V\a θabxaxb + ϕ
(a)
t (θa)

f(θ;x) =
∑

a∈V f
(a)(θa;x)

and r(θ) = τ‖θ‖1, where τ > 0 is a tuning parameter; this loss is convex in θ. We let ψ(θ) = 1
2‖θ‖

2
2
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and use a dynamical model inspired by [49], where

(Φiθ)ab ={
(1− αi)θab + αiθac∗θbc∗ if |θac∗θbc∗ | > |θ̃ab|
θab otherwise

,

where c∗ =arg minc |θacθbc|.

The intuition is that if two members of the network share a strong common connection, they
will become connected in time. We set αi ∈ {0, .001, .002, .003, .004} for the different dynamical
models. We set τ = .1 and again set η using the doubling trick with time horizons at set at
increasing powers of 10. As in [31], we find that regularizing (e.g., thresholding) every 10 steps,
instead of at each time step, allows for the values to grow above the threshold for meaningful
relationships to be found.

The first plot in Figure 2.3 shows the average per round loss of each model, and the DFS estima-
tor over a 30 year time window. We see that applying the dynamical model dramatically improves
performance relative to COMD (αi = 0) and that the FS estimator aggregates the predictions
successfully. The next plot shows the moving average losses for a few select Senators, where high
loss corresponds to unpredictable behavior. Notice that John Kerry (D-MA) has generally very
low loss, but spikes around 2006, but then drops again before a reelection campaign in 2008.
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Figure 2.3: Tracking a dynamic social network. Losses for different dynamical models and the DFS
predictions; α = 0 corresponds to COMD.
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Figure 2.4: Predictability of individual senators. Low losses correspond to predictable, consistent
voting behavior, while higher loss means less predictable
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Figure 2.5: Influence matrices for select years spanning Civil War and Civil Rights Movement to
present. We see tight factions forming in the mid- to late-1800s (post Civil War), followed by a
time when the faction dissipate in the mid-1900s during the Civil Rights Movement and upheaval
among southern Democrats. (Best viewed in color.)

By looking at the network estimates of the DFS estimator across time (as in Figure 2.5) we can
see some interesting behavior in the network that corresponds to historical events, as described in
the caption. Finally, we see factions again forming in more recent times. The seats are sorted sep-
arately for each matrix to emphasize groupings, which are strongly correlated with known political
factions.

2.4.3 DFS experiment: compressive video reconstruction

There is increasing interest in using “big data” analysis techniques in applications like high-
throughput microscopy, where scientists wish to image large collections of specimens. This work
is facilitated by the development of novel microscopes, such as the recent fluorescence microscope
based on structured illumination and compressed sensing principles [51]. However, measurements in
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such systems are acquired sequentially, posing significant challenges when imaging live specimens.

Knowledge of underlying motion in compressed sensing image sequences can allow for faster,
more accurate reconstruction [34, 41, 46]. By accounting for the underlying motion in the image
sequence, we can have an accurate prediction of the scene before receiving compressed measure-
ments, and when the measurements are noisy and the number of observations is far less than the
number of pixels of the scene, these predictions allow both fast and accurate reconstructions. If
the dynamics are not accounted for, and previous observations are used as prior knowledge, the
reconstruction could end up creating artifacts such as motion blur or overfitting to noise. There
has been significant recent interest in using models of temporal structure to improve time series
estimation from compressed sensing observations [4, 54]; the associated algorithms, however, are
typically batch methods poorly suited to large quantities of streaming data. In this section we
demonstrate that DMD helps bridge this gap.

In this section, we simulate fluorescence microscopy data generated by the system in [51] while
imaging a paramecium moving in a 2-dimensional plane; the tth frame is denoted θt (a 120 × 120
image stored as a length-14400 vector) which takes values between 0 and 1. The corresponding
observation is xt = Atθt + nt, where At is a 50 × 14400 matrix with each element drawn iid from
N (0, 1) and nt corresponds to measurement noise with nt ∼ N (0, σ2) with σ2 = 0.1. This model
coincides with several compressed sensing architectures [21, 51].

Our loss function uses ft(θ) = 1
2σ2d
‖xt − Atθ‖22 and r(θ) = τ‖θ‖1, where τ > 0 is a tuning

parameter. We construct a family of N = 9 dynamical models, where Φi,t(θ) shifts the (unvec-
torized) frame, θ, one pixel in a direction corresponding to an angle of 2πi/(N − 1) as well as a
“dynamic” corresponding to no motion. (With the zero motion model, DMD reduces to COMID.)
The true video sequence uses different dynamical models over t = {1, . . . , 550} (upward motion)
and t = {551, . . . , 1000} (motion to the right). Finally, we use ψ(·) = 1

2‖ · ‖
2
2 so the Bregman

Divergence D(x‖y) = 1
2‖x−y‖

2
2 is the usual squared Euclidean distance. The DMD sub-algorithms

use ηt = 1√
t
, τ = .002 and the DFS forecaster uses λ = m

T−1 = 1
999 and ηr is set as in Theorem 4.

The experiment was then run 100 times.
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(b) Losses averaged over 100 trials.

Figure 2.6: Tracking dynamics using DFS and comparing individual models for directional motion
for the experiment in Section 2.4.3. Only shown are DMD losses for motions which are true before
or after t = 550 for clarity. Before t = 550 the upward motion dynamic model incurs small loss,
where as after t = 550 the motion to the right does well, and DFS successfully tracks this change.
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Ground Truth

DMD Prediction

Correct Dynamic

COMID Prediction DFS Prediction

Figure 2.7: Dynamic compressed sensing experimental results. Zoomed in instantaneous predictions
at t = 1000 for the experiment in Section 2.4.3. Top Left: θt. Top Right: θ̂Right,t. Bottom Left:

θ̂COMID,t. Bottom Right: θ̂t. The prediction made with the prevailing motion is an accurate
representation of the ground truth, while the prediction with the wrong dynamic is an unclear
picture. The DFS algorithm correctly picks out the cleaner picture.

Figures 2.6 and 2.7 show the impact of using DFS. We see that DFS switches between dynamical
models rapidly and outperforms all of the individual predictions, including COMID, used as a
baseline, to show the advantages of incorporating knowledge of the dynamics.

2.4.4 DMD with parametric additive dynamics: social network tracking

Finally, we look at self-exciting point processes on connected networks [10, 32]. Here we assume
there is an underlying rate for nodes in a network which dictate how likely each node is to participate
in an action. Then, based on which nodes act, it will increase other nodes likelihood to act in a
dynamic fashion. For instance, in the context of social networks, we may observe events such as
people meeting, corresponding, voting, or sharing information [42, 48, 50, 10, 59], and from this
data wish to infer who’s actions are influencing whose, and how those influences evolve over time.
In a biological neural network, a node could correspond to a neuron and an action could correspond
to a neural spike [13].

We simulate observations of a such a self-exciting point process in the following way:

µt+1 = Φt(µt,W ) =τµt +Wxt + (1− τ)µ̄

xt ∼Poisson(µt)

For our experiments µt ∈ (0, 5]100 represents the average number of actions each of 100 nodes
will make during time interval t, and W ∈ [0, 5]100×100 reflects the unknown underlying network
structure which encodes how much an event by a one node will increase the likelihood of an event
by another node in future time intervals. Here we assume τ is a known parameter between zero
and one, µ̄ ∈ R100 is a underlying base event rate.
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Figure 2.8: Experimental results tracking a self-exciting point process on a network, described in
Section 2.4.4. Notice how the loss curve for Alg. 3 approaches the DMD curve (associated with
clairvoyant knowledge of the underlying network matrix W ) as the estimate of W improves, and
significantly outperforms conventional mirror descent.

Our goal is to track the event rates µt and the network model W simultaneously; Algorithm 3
is applied with

`t(θ) =〈1, exp(θ)〉 − 〈xt, θ〉, ˜̀
t(µ) =〈1, µ〉 − 〈xt, logµ〉,

Z(θ) =〈1, exp(θ)〉, µ =∇Z(θ) = exp(θ).

We generated data according to this model for t = 1, ..., 50000 for 1000 different trials, using
τ = 0.5, µ̄ = 0.1 and W generated such that it is all zeros except on each distinct 10 × 10 block
along the diagonal, elements are chosen to be uuT for a vector u ∈ [0.1, 1.1]10 with elements
chosen uniformly at random. The matrix W is then normalized so that its spectral norm is 0.25
for stability. Using this generated data we ran DMD with known W (Alg. 1), MD, and DMD
with additive dynamics (Alg. 3) to learn the dynamic rates. The step size parameters were set
as ηt = .9/

√
t and ρt = .005/

√
t. The results are shown for DMD with the matrix W known in

advance, MD and Alg. 3 in Figure 2.8.

We again see several important characteristics in these plots. The first is that by incorporating
knowledge of the dynamics, we incur significantly less loss than standard Mirror Descent. Secondly,
we see that even without knowing what the values of the matrix W , we can learn it simultaneously
with the rate vectors µt from streaming data, and the resulting accurate estimate leads to low loss
in the estimates of the rates.

2.5 Conclusions and future directions

Processing high-velocity streams of high-dimensional data is a central challenge to big data analysis.
Scientists and engineers continue to develop sensors capable of generating large quantities of data,
but often only a small fraction of that data is carefully examined or analyzed. Fast algorithms for
sifting through such data can help analysts track dynamic environments and identify important
subsets of the data which are inconsistent with past observations.
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In this paper we have proposed a novel online optimization method, called Dynamic Mirror
Descent (DMD), which incorporates dynamical models into the prediction process and yields low
regret bounds for broad classes of comparator sequences. The proposed methods are applicable
for a wide variety of observation models, noise distributions, and dynamical models. There is no
assumption within our analysis that there is a “true” known underlying dynamical model, or that
the best dynamical model is unchanging with time. The proposed Dynamic Fixed Share (DFS)
algorithm adaptively selects the most promising dynamical model from a family of candidates at
each time step. Additionally we show methods which learn in parametric families of dynamical
models. In experiments DMD shows strong tracking behavior even when underlying dynamical
models are switching, in such applications as dynamic texture analysis, compressive video, and
self-exciting point process analysis.
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